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Note 

Improved Iteration Scheme 
for Partial Equilibrium Flow* 

A numerical method for partial equilibrium flow [l] was recently described [2]. 
The heart of the method is a quadratic iteration scheme in which the progress 
increment for equilibrium reaction s is obtained from the equilibrium constraint for 
reaction s alone. The scheme therefore converges best when the equilibrium reac- 
tions are weakly coupled, which can frequently be achieved by a judicious choice of 
the independent equilibrium reactions [2]. 

In the continuing use of this method, situations have been encountered in which 
no single choice of the equilibrium reactions is weakly coupled over the entire range 
of parameters that occur in a calculation, and convergence difficulties have then 
been experienced. We have therefore developed an improved iteration scheme which 
is considerably more robust than the original one, and which works well even when 
the equilibrium reactions are not weakly coupled. 

The new iteration scheme consists, in essence, of the following ingredients: (a) 
preconditioning of the equilibrium constraint conditions to make them more nearly 
linear in the progress variables, (b) application of a one-step Gauss-Seidel-Newton 
iteration [3] to the preconditioned system, followed by (c) switching to a full New- 
ton-Raphson iteration if the simpler Gauss-Seidel-Newton iteration fails to con- 
verge in a specified number of steps. If the equilibrium reactions are weakly 
coupled, convergence usually occurs before the full Newton-Raphson iteration is 
called into play. However, if the reactions are not weakly coupled the interaction 
between them is properly accounted for by the matrix inversion in the New- 
ton-Raphson procedure. 

The idea of using a simple fast iteration procedure for a certain number of steps 
and then switching to a full Newton-Raphson procedure is due to Meintjes and 
Morgan [4], who utilized a full Newton-Raphson method as a backup to the 
original quadratic iteration scheme of Ref. [2]. Results were encouraging but not 
fully satisfactory. The main innovation in the present approach is the precondition- 
ing of the equilibrium constraint conditions, which was not done by Meintjes and 
Morgan. (Another difference between our scheme and theirs is that we use a one- 
step Gauss-Seidel-Newton iteration in place of the quadratic iteration of Ref. [2]. 
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However, this has little effect on the convergence behavior because the nonlinearity 
is greatly reduced by the preconditioning.) 

For present purposes, we may restrict attention to the equilibrium part of the 
partial equilibrium flow description discussed in Refs. Cl, 23. We have a system of 
N equilibrium reactions symbolized by 

where s ranges from 1 to N, and X, represents one mole of chemical species k. Each 
equilibrium reaction imposes a constraint of the form 

IJ (PklMk)bk”-ah=fw) (2) 

on the partial mass densities pk of the species involved in the equilibrium reactions. 
Here Mk is the molecular weight of species k, and K;(T) is the concentration 
equilibrium constant for reaction s at temperature T. The starting values of the par- 
tial mass densities, which do not satisfy Eq. (2), are denoted by Pk. For present pur- 
poses T and the ck may simply be regarded as given, although they are of course 
actually determined by other parts of the numerical scheme that are not of concern 
here. The precise signilicance of the fik in terms of the remainder of the calculation 
is given in Ref. [2]. 

The species densities are related to their starting values by 

Pk = P”k + Mk 1 (bks - aks) % (3) 

where CD, is the progress increment for reaction s. Equations (2) and (3) combine to 
yield a coupled nonlinear system of N equations in the N unknown quantities 0,. 
Since these equations will be solved iteratively, we introduce an iteration index v 
which will be displayed as a superscript. Thus the approximation to w, after 
iteration v is denoted by 01, and the corresponding approximation to p& is 

Pi = Pk + Mk 1 (bks - aks) w:. (4) 

It is understood that CD,” =O, so that p: = Pk. It will also be necessary to refer to 
intermediate species densities defined by 

s-1 

Pk(V,S)=P”k+Mk 1 (bkr-akr)$+Mk f (bkr-akzb-l. (5) 

It is convenient to introduce a vector p = (pl, p2,...) whose components are the 
species densities pk. Functions of the pk can then be compactly written simply as 
functions of the vector variable p. The notation p” refers, of course, to the vector 
whose components are the p;, and p(v, s) refers to the vector with components 
PktV, s). 
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The notation adopted here is essentially the same as that of Ref. [2], with the 
minor exceptions that in Ref. [2] parentheses were placed around the superscript v, 
the progress increments CO, were denoted by do,, the species densities pk satisfying 
Eq. (2) were denoted by p;+ ‘, and N was denoted by N,,. 

We now proceed to consider how the equilibrium constraints of Eq. (2) might be 
preconditioned to make them more nearly linear in the 0,. The first step is to iden- 
tify the principal or dominant dependence of the left member of Eq. (2) upon the 
w,. The form of this quantity suggests that we determine, for each reaction s, the 
species k for which the factor (p,JMk)bks-akS depends most sensitively, in some 
appropriate sense, on the o,. Let this be the species with index k = K(S), and denote 
b K(S1.S -a KCS1,S by qs. The species k = K(S) will be referred to as the reference species 
for reaction s. The dominant dependence of the leftmember of Eq. (2) on the CO, is 
now regarded as being contained in the factor (pK~s~/MK~s~)q~. Since p,+, itself is 
linear in the ws, this dominant dependence can be made to manifest itself linearly 
by raising both sides of Eq. (2) to the power ps E l/q,. We therefore replace the 
constraint conditions of Eq. (2) by the preconditioned constraint conditions 

fl (p/JMk)(bkS-ak*)Pr= [KsC( T)]P’. 

It is convenient to introduce quantities F, and G, defined by 

G, = K;(T) n (pk/Mk)uks- bkr, 
k 

F, = G;Ps - 1, 

in terms of which Eq. (6) becomes simply 

Fs=O. 

(6) 

(7) 

(8) 

(9) 

We have yet to specify how the reference species are to be determined. For sim- 
plicity, we shall define the reference species for reaction s as the species for which 
the factor (pk/Mk)bks-akS depends most sensitively on w, alone, without regard for 
the other progress variables. That is, IC(S) is the value of k for which the quantity 

is largest in magnitude. This quantity is easily evaluated from Eq. (3), with the 
result Rks = Wfkl~d(bks - ad2. 

In the subsequent development, we shall require the partial derivatives ~FJ&u,, 
which are also easily evaluated from Eq. (3). The result is 

3FS aw = P~G;~~A,,, 
I 
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where 

As, = 1 t”k/Pk)@ks - aks)(bkt - ukr)* 
k 

(12) 

We note that the matrix A,, is symmetric and positive definite. We also note that 
the reference species for reaction s is the species which makes the largest con- 
tribution to the diagonal element A,,. 

The quantities F, and G, have been defined as functions of the species densities, 
and may therefore be written as F,(p) and G,(p). Similarly, A,, = A,,(p). By virtue of 
Eq. (3), all of these quantities may alternatively be regarded as functions of the 
progress variables w,, and this will be done without special comment when it is 
convenient. 

Next we must define the two basic iteration procedures that the present method 
utilizes, namely the Gauss-Seidel-Newton and Newton-Raphson procedures. The 
one-step Gauss-Seidel-Newton iteration procedure, applied to the system of 
Eq. (9) takes the form [3] 

WY+1 =m:- F&w’;+ l,..., co:‘;, co:,..., oh) 
s dF,(o;+ ’ ,..., co;+:, co: ,..., o;)/&o;’ (13) 

Equations (5) (8), and (11) allow us to rewrite Eq. (13) in the more useful form 

(14) 

As remarked in Ref. [2], it is not necessary to actually evaluate p(v + 1, s) by 
means of Eq. (5), because if the pk are continually updated as running sums then 
p(v + 1, s) is simply the “current” value of p just prior to the evaluation of 01’~. 

Strictly speaking, since ps is considered constant in evaluating aF,/&o,, ps (and 
therefore qs) should be held constant and not allowed to vary with v. However, we 
have found that convergence is slightly accelerated if ps and qs in Eq. (14) are 
allowed to vary by reevaluating K(S) in terms of the pk(v + 1, s) on every iteration. 
Just as in Ref. [2], the value of o;+ I -WI given by Eq. (14) is subjected to the 
restriction 

0.96c0,“‘” < 0; + 1 - q < 0.9&y, (15) 

where 60,“‘” and ~wY are the minimum and maximum values of w: + l- o: that 
preserve the nonnegativity of the pk [2]. 

The second iteration procedure used is a standard Newton-Raphson iteration, 
which for the system of Eq. (9) becomes 

x Caf’Aoj:,..., ~~)/dw:l(w:+~ -co;) = -F,(w;,..., co);). (16) 

58 I/59/3- IO 
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Using Eqs. (4), (8), (ll), and (12), we may rewrite this as 

1 ~,,(P’)(~:+ l - 03 = qs{ CG,(P’)I~~- 11. (17) 

To obtain the w; + l, it is necessary to invert the N x N matrix A&“). This may be 
done using any of the standard methods, one or more of which are usually available 
as modular library subroutines in large computer centers. 

Just as before, ps and qs should strictly be held constant in Eq. (17). In practice, 
however, we find it slightly advantageous to allow them to vary with v by 
reevaluating the reference species in terms of the p; on every iteration. 

In spite of the preconditioning, Eq. (7) occasionally yields values of WI+ 1 that 
drive one or more of the p;+l negative. (In particular, this may happen when a 
single trace species of very small concentration is involved in two or more reactions, 
as the matrix A,, then becomes ill-conditioned.) When this occurs, the values of 
WI+ l -WI given by Eq. (17) are all reduced in magnitude by a factor a (0 < a < l), 
and the p;;+l are recomputed accordingly. If any of them are still negative, the 
reduced values of o:+ I- w: are further reduced by another factor of tl and the p;+ l 
are recomputed again. If necessary, this procedure is repeated up to N, times, 
whereupon if negative values of the p;+ ’ still persist the o:+ l given by Eq. (17) are 
simply discarded. The iteration is then repeated as a Gauss-Seidel-Newton 
iteration, with the w; + ’ obtained from Eq. (14). We currently use the values a = 0.3 
and N, = 6. 

The iteration scheme as a whole is structured as follows. The first N, iterations 
are performed with the one-step Gauss-Seidel-Newton algorithm. If convergence 
has not already occurred, all subsequent iterations are performed with the Newton- 
Raphson algorithm, except as noted in the preceding paragraph. We currently take 
N, = 7. The iteration scheme is considered to have converged when 1 G, - 1 I < E for 
all s. Currently E is taken to be 0.02. 

In some situations, it may be advantageous to replace the one-step 
Gauss-Seidel-Newton iteration by the corresponding one-step SOR-Newton 
iteration [3]. This may be done by the trivial modification of replacing the factor of 
qs in the right member of Eq. (14) by Qq,, so that the change in w, on each 
iteration is multiplied by the overrelaxation factor Sz (0 < Q 5 2). 

The improved iteration scheme for partial equilibrium flow described above has 
been in routine use for more than a year in the CONCHAS-SPRAY [S] and 
KIVA [6] computer programs. The applications to date have encompassed a 
variety of different conditions, including rich and lean hydrocarbon combustion and 
rapid exothermic transients. No convergence failures have yet been experienced, 
even in situations where the original quadratic scheme of Ref. [2] failed badly. It is 
therefore our intention and recommendation that the iteration scheme of Ref. [2] 
be superseded by the improved scheme described above. 
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